Quiz 3 solutions

1. Let G be a group, and let $H, N<G$ be solvable subgroups such that $N \triangleleft G$. Then show that internal product $H N$ is solvable.
Solution. From Lesson Plan 3.2 (iv), we know that $H N \leq G, N \unlhd$ $H N$, and $H \cap N \unlhd H$. Thus, by the Second Isomorphism Theorem, it follows that $H / H \cap N \cong H N / N$. Furthermore, since H is solvable and $H \cap N \leq H$, it follows from Lesson Plan 7.2 (vii) that $H \cap N$ is solvable, Thus, it follows from Assignment (iv): Practice problem 9 that $H / H \cap N$ is solvable, and consequently $H N / N$ is solvable. Finally, since N is solvable and $N \unlhd H N$, by Lesson Plan 7.2 (viii), we conclude that $H N$ is solvable.
2. Show that a group of order $p^{2} q$, where p and q are distinct primes with $p<q$, is solvable. [Hint: Use the Sylow's theorems and note that $p \not \equiv 1$ $(\bmod q)$.
Solution. Let G be of order $p^{2} q$. From the Third Sylow Theorem, we know that the number of Sylow q-subgroups (of $G) n_{q} \equiv 1(\bmod q)$ and $n_{q} \mid p^{2}$. Thus, it follows that $n_{q} \in\left\{1, p, p^{2}\right\}$. Since $p<q$, we have that $p \not \equiv 1(\bmod q)$, and hence $n_{q} \neq p$.
Suppose that $n_{q}=p^{2}$. Then $p^{2} \equiv 1(\bmod q)$, or $q \mid p^{2}-1$, which implies that $q \mid(p-1)(p+1)$. Since $q>p$, it follows that $q=p+1$, which forces that $p=2, q=3$, and $|G|=12$. Since every abelian group is solvable, and the only non-abelian groups of order 12 (up to isomorphism) are A_{4}, D_{12}, and $\mathbb{Z}_{4} \ltimes_{-1} \mathbb{Z}_{3}$, which are all solvable (use Assignment (iv): Practice problem 6 and Lesson Plan 3.2 (vii) to verify this!), we have that G is solvable.
Finally, if $n_{q}=1$, then G has a unique Sylow q-subgroup Q, which is normal in G, by Lesson Plan 4.4 (x). Furthermore, since $|G / Q|=p^{2}$, it follows that G / Q is abelian. Therefore, as Q is solvable, by Lesson Plan 3.2 (viii), we infer that G is abelian.
